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Elastic composite media consisting of a homogeneous and isotropic matrix in 
which the other components are distributed in the form of ellipsoidal inclu - 
sions are considered. The location and orientation of the inclusions in the 
matrix are random, therefore, a random stress field (microstresses) is gene- 
rated in the composite under strain. The microstresses reach a maximum on 
the surface of the inclusions (stress concentration effect). In this paper we 
establish a dependence between these maximum microstresses and the mean 
microstresses for a moderate concentration of inclusions. The known results 
[l] of an investigation of the state of stress in the neighborhood of an ellip - 
soidal inclusion in an unbounded elastic medium are elucidated in Sect. 1. 
The required stress field satisfies an integral equation whose solution can be 
found exactly [2]. The problem of determining the microstress field in a 
composite material reduces to solving a system of integral equations (Sect.2). 

The large number of equations as well as the randomness of the location of the 
centers of the inclusions in the matrix, which exclude the possibility of an 
exact solution of this system, permit the use of the statistical nature of the 

problem and its approximate solution. Consequently, the effective tensor 
stress concentration coefficient, relating the configurational means over the 
surface of the isolated inclusion to the macrostresses ) is determined. This 
quantity is represented in the form of the convolution of two tensors, one of 
which is the stress concentration coefficient on an isolated inclusion in the 
matrix, while the other takes account of the influence of the residual inclu- 
sions . A correcting tensor is calculated in Sect. 3 for certain kinds of macro- 

scopic isotropic composites and, particularly for a medium weakened by cir- 
cular cracks. A circular crack in a composite with spherical inclusions is 
considered in Sect. 4 and the effective stress intensity coefficient is found 
as a function of the stiffness and the volume content of the inclusions. 

1. Let us consider an ellipsoidal inhomogeneity occupying a domain v in an un- 
bounded medium with the elastic moduli tensor La. At great distances from the inclu - 
sion let stresses or displacements be given. The strain field E (x) in such a medium 
satisfies the integral equation [l] 

e (x) = e, (x) + 1 G (x - x’) [L] e (x’) dx’ 

G (x) = (Gijkl (xY) = [uik, jl (x)](ij)(kb [L] = L1- Lo 

(1.1) 

Here &o (x) is the strain field which would exist in a medium without inclusions, L1 is 
the elastic moduli tensor of the inclusion, uik (x) is the Green’s tensor of the Lame 
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equations for the fundamental medium I parentheses denote symmetrization with respect 
to the corresponding subscripts, and the product of two tensors is understood to be the con- 

volution relative to the two subscripts: A b ES Aifklbki, AB = Aijmn&n~~. 
An equation analogous to (1.1) can also be written for *the stresses 

o (x) = 00 (x) + 1 r (x - x’)[M] cr (x’) dx’ (1.2) 

ob (x) = &o (;, I’ (x) = - & (16 (x) + G (x) Lo) 

iMl = M, -f MO, Ml = L1-1, MiJ = Lo-l, 1 = (Ii& = 6#& 

where Itjkr is a unit quadrivalent tensor, and 6 (x) is the delta - function. If x E v, 
then (1.2) is converted into an integral equation relative to the stress field of (x) in 
the Inclusions. In particular t the field Uf for a homogeneous field u. is also homo - 
geneous and determined by the expression 

u+ = Bus, B = (I + Q [Ml)-li 

(1.3) 

Q = Ls (I - PLO), P = - 1 G (x - x’) dx’, (x, X’EU) 
Y 

where P is a constant quadrivalent tensor dependent on the geometric characteristics 
of the ellipsoid and on the elastic moduli of the basic material. 

If the matrix is isotropic, then 

Cl.41 

where k,, p. are the volume and shear elastic moduli of the medium rp+, $+ are the 
harmonic and biharmonic potentials of an ellipsoid of unit density at an interior point. 
It hence follows that the tensor P must have the symmetry of the ellipsoid and be de- 
termined by nine real components. In a coordinate system coincident with the principal 

axes of the ellipsoid 

Pm = Yo I3J1, + (1 - 4vo) JJ, pm, = yo (J,, - JJ (1.5) 
J’,,,, = yo [Jzl + J,, + (1 - 2 ~0) (J1 + Jd, yo = 
=I16 np,, (1 - v,,)I-~ 

( v. is the poisson’s ratio). The quantities 
CQ aI 

(ar,s +dz) A (u) ’ ‘pq = 2 
-?- l?aps 

5 

du 
(a 

D 
s i- u)(a,2 + u) A (u) P 

where ai (i = 2, 2,,3) are the lengths of the ellipsoid semi-axes which are expressed 
in terms of elliptic integrals. The remaining six nonzero components of the tensor Pijkr 
are obtained from (1.5) by a circular commutation of the subscripts. 

Outside the inclusion the stress field is 

Cr- (x) = 0, - LOG- (x) L,, [M1 (r+ (1.6) 



On the stress concentration in inclusions 755 

G- (x) = 1 G (x - x’) dx’, (%4 
0 

Substituting (1.3) into (1.6) yields 

o- (x) = FO (x) 00, Fo (9 = B (1 + (Q - LOG (~1 Lo) Ml (1.7) 
This expression permits determination of the limit value of the stress tensor o- (n) on 
the inclusion boundary from outside. There is hence no need to calculate the external 

ellipsoid potentials. Indeed, by using the relation for jumps in the derivatives of the 
potentials upon passing through the boundary 

[q,jr] = - 4Xnjnl, [$,ijkll = - 8 nni”jn,n[ 

where 7~i are components of the unit normal to the surface of the inclusion, we obtain 

Finally, taking into account that B can be converted as follows: 

B = MoL,A, A = (I + P WI)-’ 

we arrive at an expression for the tensorial stress concentration coefficient F. (n) 

(J- (n) = PO (n) uo, F. (n) = A {I + K (n) [Ll} (1.9) 

which agrees with that found in [1] for the more general case by using the problem of 
the connection of two media. 

2. Now, let us examine a multicomponent composite material consisting of a 
homogeneous matrix and filler particles of ellipsoidal shape. For simplicity, we shall 
consider the inclusions of one component of identical magnitude but differently oriented 
in space. 

Let us isolate the characteristic volume V of the composite, i. e. , a volume with 
dimensions substantially exceeding the distance between the inclusions, but within whose 

limits the change in the macroscopic stress and strain fields can be neglected. Such a 
volume should contain a sufficient number of inclusions for averaging, where the ma - 
terial within its limits can be considered macroscopically homogeneous, 

Let us represent the tensor of elastic compliances M(x) as 

NCt 
M(x) = M, + 6M (x), 6M (x) = 5 [M,] 2 vam (x) (2.1) 

a=1 WL=l 

[MaI = Ma - MO 

where n is the number of components distributed in the material in the form of inclu - 
sions, N, is the number of inclusions of the u - th component in the characteristic 

volume, and v,,,, (x) is a function equal to one within the m - th inclusion of the 
a - th component and zero outside the inclusion. The stress field u (rk) in v satisfies 

an equation analogous to (1.2) 

u (x) = u. + 1 r (x, x’) 6M (x’) (J (x’) dx’ 

l? (x, x’) = ” L, [I6 (x - x’) + G (x, x’) Lo1 

(2.2) 
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Here G is defined exactly as in Sect. 1, where u (z, z’) is the Green’s tensor of the 
Lame equation for a medium with elastic moduli &, which vanishes on the surface S 
of the volume I/, and o, is the external field which would exist in the matrix for gi- 
ven boundary conditions on s. These latter are selected in such a way that the field 

o0 would be homogeneous. We shall henceforth consider the volume V so large that 
the Green’s tensor U (x, x’) in the expression for the kernel in (2.2) could be repla- 
ced by the Green’s tensor V (x - x’) for an unbounded domain. 

According to (2.1)) the field of the tensor 6M (x), and hence, the form under 
the integral sign in (2.2) are not zero only in subdomains occupied by the inclusions. 
Therefore, this integral reduces to the sum of integrals in such subdomains and (2.2) 

becomes 

u (x) = (lo + 23 s r (x - x’)[Ma] u (cd) dx’ (2.3) 
a m %m 

where vam is the volume of the m - th inclusion of the a - th component. If the 
characteristic volume contains 

N=r,N, 
a 

inclusions, then taking the arbitrary point x E uam as the point x for m = 1, 2, . 
** * we obtain a system of linear singular integral equations in the N tensor functions 

o (x> (x E vam) which describe the stress fields in the inclusions. An exact solution 

of this system is quite a complex problem even for relatively small N. On the other 
hand, namely a large number and a random location of the centers of inclusions in the 
characteristic volume germit using the statistical nature of the problem and finding the 

mathematical expectation of the quantities required. In particular, the stress field can 
be determined in an arbitrary inclusion in V, averaged over that set of inclusion con- 

figurations in the matrix for which the position and orientation of this inclusion have 

been fixed. The tensorial stress concentration factor in the inclusion, determined on the 
basis of this solution, should be understood as the mean in precisely that sense. 

Let us fix the point x in an arbitrary k - th inclusion of the s - th component and 

let us rewrite (2.3) as follows 

0 (x) = r(x) -t 1 I’ (x - x’)[n/r,] u (x’) dx’, 
“Sk 

Here integration over the domain v,~ has been extracted and 
been introduced : 

x7 X’E~sk (2.4) 

the following notation has 

z(x) = 00 -t 3 \ r (x - xa, - j)iMal CJ (x,, + 5) d5 (2.5) 

In this expression x,,, is the radius - vector of the center of the inclusion u,, and g 
is a vector connecting the center of the inclusion to its arbitrary inner point and the 

prime on the summation sign indicates the absence of a term with subscript m = k 
for a = s. 

Now consider the ensemble of inclusions in the volume V. For each realization of 
the ensemble (I = u (x; FN), whereF, is a set of radius - vectors of the centers of 
the inclusions and their orientations governing the specific configuration. We introduce 
the conditional distribution function cp (x,~, wSk j FN_~), where oSk is the set of Euler 
angles giving the orientation of an ellipsoid with center at x,&. Applying the operation 
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of taking the average over this distribution function to (2.~4)~ we obtain 

(0 (x I %J> = (z’b I %kD 4” 1 I‘ @ - X’WGI (u b’ t %kb dx’ 
‘Usk 

Let us use (2.5) and the identity 

(2.6) 

where cp (x, o 1 x’, a’> is the conditional unary ~tr~b~tio~ faction normalized to 
unity, to evaluate the quantity (5 (x ] x8&} . For a statistically homogeneous distri - 

bution of the centers of the inclusion with a moderate concentration we set 

~(x,o{x’,o’)~H(Jx-x’j-22a)g,(x,o), ql(x,cca)= +cp(N (2.8) 

where H (x) is the Heaviside function and a is the major semi-axis of the ellipsoid, 
Taking the average of both sides of (2.5) with (2, ‘7) and (2.8) taken into account, we 
obtain 

Here <fF (S 1 Xam; X,,)> is the field G (x) (X E? 2%~~) averaged over the set of con- 
figurations for which the position and orientation of two inclusions are fixed. Let us 
assume that <a (“s 1 Xnm; X,,)> = (0 (g j XC&)), where because of the homogeneity 
of the field 60 this quantity is independent of the location of the inclusion in the vo- 

lume E’ but depends only on the orientation o,,,. Then using re~lari~ations of the 
integrals which diverge at infinity, by virtue of which [3] 

we reduce (2.9) to the form 

(2.10) 

Here Y& (G$ is the stress field in an arbitrary inclusion of the a - th component avera- 

ged over the volume of the inclusion, and the components of the isotropic tensor p, 

are deter~~ed by Cl. 5) in which we should put JP= 4/3 T[;, JPp = 3 J,, = 4/5 ;na-2 
(% = a). Therefore t under the assumptions made, the field (z (x 1 xSk)> turns out 

to be homogeneous. Then as follows from (2.6) e the field <CY (X 1 rf-&> is also homo- 
geneous and it can be identified with the mean relative to the inclusion. Using the no- 

tation <a (X 1 X8*)> == cr, (~3, we have in conformity with (1.3) 
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B, (%) = (I + Q f%;) IMsI)-‘, Q (@ii) = Lo (1 - p br) Lo) 

Multiplying both sides of (2.11) by c, [AZ,], taking the average with respect to the 
orientations and summing over all components, we find 

Substituting (2.12) 
for the stress tensor 
tion 0: 

into the right side of (2.11) results in the following final expression 
(I,+ (CO) within the ellipsoid of the s - th phase with the orienta - 

o,+ f@) = B, (@> f) <o> (2.14) 

It has hence been taken into account that cl0 coincides with the macrostresses <o> in 
conformity with the definition of the characteristic volume of the composite. 

If the point of observation x in the matrix is fixed near the boundary of the iso- 

lated inclusion, then by using reasoning analogous to that presented above, we obtain 
the expression 

as- (x) = DFO, (x) <o> (2.15) 

for the stress field cr,- (x) in the neighborhood of this inclusion, where Fo, (x) is de - 
fined by (1.7) as before. It hence follows that the tensorial stress concentration factor 
in the inclusions in composite materials 

F, (n) = DFo, (n) f 2.16) 

differs from the concentration factor Fos (n) in a single inclusion in the matrix by the 
tensorial factor D = (Dijlrl) which takes account of the influence of the other inclu - 
sions . 

9, The stress concentration in an ellipsoidal inhomogeneity in an elastic medium 
and, particularly, in an ellipsoidal crack and needle has been investigated in detail in 
[l ,4]. Hence, without examining FO, (n) further we present the value of the correc - 

tion tensor D for certain kinds of composite materials, 
Let the inclusions in the composite material be isotropic with the volume and shear 

elastic moduli k, and pL4, and let their orientations be equally probable. We denote the 
volume concentration of the inclusions of the different components by cz(gca f CO = 1, 

where CO is the relative volume of the matrix ) . In this case the tensor <BEI>@ is iso - 
tropic, i. e., 

<Bi”j/rl) = By6ij8kr + 2 B: (lijkl - l/s S~jG,~~) 

Bla = '/gBgjj, Bs" = l/lo(BGij - 3Bl') 

The tensor D is also isotropic with the components 

(3.1) 

(3.2) 
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4 = [~-2q2°cc~(~-~)~2a~-1 
a 

$hk, 
4r” = 3/s, + 4P” I qk!O = 

PO Wo + 8h) 
5 (3k, + 4~0) 

(3.4) 

Let us assume that the composite contains spherical inclusions of only one compo - 
nent. In this case P = P,, and (3.4) simplifies 

DI = $ [i + ql’( k - $-)I [I -t coql’= (+ - &)r’ 
D2 = [l + 42q$- -$-)][I -t coq2~(&+-)1_1 

(3.5) 

In particular, if the stiffness of the inclusions substantially exceeds the stiffness of 
the matrix, then 

i. e., the stress concentration .on the surface. of the inclusions diminishes with the growth 
in their volume content. In the other limiting case when the matrix contains spherical 
vacancies (pores), the tensor D takes an especially simple form 

Dijkr = c-II.. 0 tJk1 

and, therefore, the stresses on the pore surface grow with the increase in porosity. 
Let us consider a porous material whm pores have the shape of ellipsoids of revo- 

lution with the semi-axes a, = a2 = a > aa and the ratio between the semi-axes 

q = as/a. In this case 

D = (I - c@o <A>P (3.6) 

where the tensor A-l has an orthorhombic structure with six nonzero real components 

A 1111 -1 = A,,,,-1 = %l [I - l/s (3 - 3/4 fl + fJ1 
A 1122 -l = x0 {Y. - l/l3 I2 - l/2 fl - 2 (1 - 4 Yo) f21) (3. 
A 1133 -1 = A,,,,-1 = x0 {Yo - l/11? [(I i- 11”) fl - (1 - 4 yo) x 

(4 - f2>U 

A&s = '/a~o(q~fx + f2) 

- ‘[2 - + fl + 2 (1 - 2Yo) r21} 16 

7) 

A;i13 = A& = .,? 1 - ‘a -_ ^ ..__ 
2 - & r(l + q2) fr + (1 - 2~0) (4 - MI} 

fl = 4 - 3f2 

1-q ’ 
f2 = 2q 

(1 - Tpp 
(arccosq - q VI - $) 

ah 
X0 =x 

in a coordinate system with 5, - axis coincident with the axis of rotation of the ellip - 
soid. 

The formulas presented permit the investigation of the stress concentration on the 
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surfaces of circular cracks in planform, which are distributed in the material (we under- 
stand the crack to be an ellipsoidal cavity with the ratio 11 = us/u tending to zero). In 
this case, a difficulty occurs in evaluating the matrix A -l (q) which is associated with 

the fact that it becomes singular, i.e., det A-t (7 -+ 0) 3 0. To realize the passage 

to the limit as ‘1 3 0, corresponding to the crack, we write the expansion of the ten - 

sor A -i (q) in a series in 11 

where the first two terms presented for the expansion are obtained from (3.7) for fi = 
4 - 3 q, fi = q. Then we invert the tensor A,,-l + Al-l q which takes account 
of only terms of the order of l/q. We consequently obtain 

A 4 t1 - %?) A1313 = A2323 = 2 (l - “d 
s3s3 = 7r (1 - 2Yo) .rj ’ n(2--drJ 

and the remaining components are zero to 0 (1) accuracy. Substituting these expres - 
sions in to (3.6), we find that the tensor D for an equally probable crack orientation 
is determined by (3.3) in which 

D, = (1 - 3 cq;A$l, D, = (1 - 2 cqzoA2)-1 

A _ 4 ’ - y”2 A2 = & (1 - vn)(5 - v,,) 
1 9n 1’ A- rcraa” 2-v, 7 c=3 

(n = N/V is the countable crack concentration) 

4. Now, let us assume that a microcrack of radius a occurred in a composite ma - 
terial with spherical inclusions. We consider the material to have three components, 

where the role of one is played by a cavity in the form of an ellipsoid of revolution, 

which passes into a crack in the limit. To investigate the state of stress in the neighbor- 

hood of the crack, (2.15) can be used , in which the tensor D is determined by (3.3) 

and (3.4). However, the quantitiesD,and D,can be found by means of (3.5) because 
of the smallness of the factor a3/v . 

Let the macroscopic loading of the material reduce to simple tension along the 51 
axis, and the plane of the crack be perpendicular to this axis. In this case the stress ori- 

at the crack edge has a singularity, and the effective stress intensity factor k* is 

k* = (01 + 2/3 D,) k 

where k is the stress intensity factor for a crack under tension in a medium without inc- 
lusions . If the inclusions are vacancies, then 

k* = klc,, 

and for absolutely rigid inclusions 

It is seen from the formulas presented that the stress intensity factor at the crack 
vertex will grow with the increase in porosity, while the presence of rigid inclusions 
diminishes /c* and therefore, increases the critical load. 
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